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Abstract— Objective: Recent quantification research on
Parkinson’s disease (PD) integrates wearable technology
with machine learning methods, indicating a strong poten-
tial for practical applications. However, the effectiveness
of these techniques is influenced by environmental set-
tings and is hardly applied in real-world situations. This
paper aims to propose an effective feature assessment
framework to automatically rate the severity of PD motor
symptoms from short-term motor tasks, and then classify
different PD severity levels in the real world. Methods:
This paper identified specific PD motor symptoms using a
novel feature-assessment framework at both segment-level
and sample-level. Features were selected after calculating
SHapley Additive exPlanation(SHAP) value, and verified by
different machine learning methods with appropriate pa-
rameters. This framework has been verified on real-world
data from 100 PD patients performing Unified Parkinson’s
Disease Rating Scale(UPDRS)-recommended short motor
tasks, each task lasting 20-50 seconds. Results: The sen-
sitivity for recognizing motor fluctuations reached 88% in
tremor recognition. Additionally, LightGBM achieved the
highest accuracy for early detection(92.59%) and achieved
71.58% in fine-grained severity classification using 31 se-
lected features. Conclusion: This paper reports the first
effort to assess multi-level and multi-scale features for au-
tomatic quantification of motor symptoms and PD severity
levels. The proposed framework has been proven effective
in assessing key PD information for recognition during
short-term tasks. Significance: The explanatory analysis of
digital features in this study provides more prior knowledge
for PD self-assessment in a free-living environment.
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I. INTRODUCTION

PARKINSON’S disease(PD) [1] is the second most com-
mon chronic neurodegenerative disease affecting 2 ∼ 3%

of the population aged 65 or older. The global burden of
disease study [2] estimates that the number of PD cases will
double from about 7 million in 2015 to about 13 million in
2040 due to the ageing and increasing life span of the global
population. PD is clinically diagnosed by questionnaires [3]
and motor diaries [4] according to the Movement Disorder
Society’s Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS), which is time-consuming, less compliance, large
recall bias and diary fatigue. A research study [5] shows
that prodromal PD could be recognized by a combination of
nonmotor markers (olfactory loss, depression, anxiety), motor
measures (REM sleep behaviour disorder), and biomarker
testing (Dopaminergic PET or SPECT abnormalities). Further-
more, it is also introduced that the markers of the clinical
PD stage include progressive bradykinesia, rest tremor, and
rigidity.

Recently, most studies [6], [7] have claimed that inertial
sensors could quantify some motor symptoms in PD by using
the data from accelerometers, gyroscopes, and magnetometers.
Specifically, inertial wearable devices [6] are used for quan-
tifying tremors and bradykinesia by sitting, palms extended
forward, and finger tapping for 10 seconds. Moreover, the
freezing of gait (FOG) symptom [8] has been recognized from
the 8-hour walking task with a sensitivity of 73.1% and a
specificity of 81.6% by a set of inertial sensors. Though the au-
tomated methods based on inertial sensors have outperformed
neurologists, they are limited to the lab, using professional
devices worn on the thumb and index finger. Therefore, a study
[7] has used a smartwatch on the wrist aiming to monitor real-
world motor fluctuations in PD. It has been demonstrated that
the smartwatch can accurately estimate displacement, showing
a strong correlation (r = 0.98) with simulated tremors in
different positions. The maximum displacement also correlated
significantly (Spearman correlation = 0.80) with 5-level MDS-
UPDRS tremor severity, while tremor constancy was positively
correlated (Spearman correlation = 0.72) with mean daily
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tremor estimates. Moreover, in the free-living environment,
using only one wrist sensor [9] has proven the ability to contin-
uously capture resting tremor and hand bradykinesia. There are
also studies [10] collecting inertial data of PD from personal
smartphones in the wild and found that the utilisation of 454
unlabelled subjects’ data could help 9% increase in F1-score
for tremor detection in 45 subjects with ground-truth label.
Meanwhile, the abnormal Rapid eye movement (REM) per-
centage [11] has been successfully detected by a smartwatch-
based sensor, yielding results in the control group (1.6±1.3%),
PD group with clonazepam (2.0±1.7%), and PD group without
clonazepam (5.7±7.1%). However, most of these studies are
based on long-term monitoring or simulated motor symptoms.
Long-term feature assessment frameworks have limited utility
and acceptability due to high time consumption, requiring
patients to wear devices for several days. Therefore, to extract
valuable information from real-life signals, it is necessary to
include multi-scale feature in feature assessment.

Some segment level features [12] including time domain
(mean, max, min, range, root mean square, axis correlation,
autocorrelation, skew, and kurt), frequency domain (dominant
frequency, energy, entropy), and hybrid domain could be ex-
tracted from each segment after sliding window segmentation.
Typically, segments are derived by utilizing a fixed window
segmentation with overlapping rates from the raw signals,
which is not suitable for the free-living environment due to the
presence of diverse motor patterns in continuous signals. An
event-based adaptive sliding window [13] approach has been
proposed to solve this problem by expanding or contracting
the time window according to the detected activity type. And
the results showed that it outperforms traditional methods by
15.3% in static conditions, but demonstrates less improvement
in dynamic scenarios, mainly due to limited analysis over the
long term. Besides, tremendous feature fusion methods have
been proposed to better combine different aspect features for
training.

Except for the difficulty in deciding the segmentation
approach, there are some other challenges when extracting
effective features in the free-living environment. There is
a gap between data quality that collected in a free-living
environment and data collected in a controlled environment.
For example, it is common for participants to wear only one
consumer-level device instead of multiple professional devices
in the free-living environment, because multiple professional
wearable devices may bring economic pressure on patients
and hinder the patient’s daily activities. In the data collected
from a free-living environment, the collection frequency may
deviate along with the time, and environmental noise [14]
may occur. On the other hand, less guidance may result in
many anomalous activity patterns [15] exist in a free-living
environment, and it is hard for us to recognize the reason
(symptom result or intentional human influence) for these
anomalous patterns. It is important to analyse the features and
remove some personalized information by using suitable signal
decomposition and signal transfer methods.

This study aims to assess features extracted from short-
term motor tasks in a free-living environment. The feature
assessment framework proposed in this study can extract

symptom-related information from real motor task signals. The
contribution of the study is below:

• A multi-scale(segments, samples) and multi-level(time,
frequency, spectrum, autocorrelation) feature assessment
framework is proposed for PD symptoms detection and
PD severity classification through short-term motor tasks.
Walking Around(WA) task shows high performance over
all of the short-term motor tasks in fine-grained PD
severity classification.

• A comprehensive experimental analysis is carried out to
assess the significance of digital features using Light-
GBM and SHAP. 31 out of 636 features were selected
to improve the accuracy of fine-grained PD classification
through WA task.

• A detailed evaluation of various classifiers is given to
assess different domain features. The ensemble classifier
LightGBM exhibits strong performance in short-term
motor tasks. In WA task, sample-features contribute to
early detection and spectrum-features contribute to fine-
grained severity classification.

The remainder of the paper is structured as follows: Sec. II
describes the related works in this paper; Sec. III shows the
methodology we use in this work; Sec. IV describes the
experiments’ results; Sec. V offers some discussion; and the
conclusion is given in Sec. VI.

II. RELATED WORK

A. PD Diagnosis Criteria
The MDS-UPDRS [16] is a widely used clinical tool for

assessing Parkinson’s disease. MDS-UPDRS consists of four
sections, Part III is the most significant section as it examines
motor abilities, while Part IV assesses motor symptoms. How-
ever, the MDS-UPDRS has some limitations, such as being
subjective, time-consuming, and requiring a clinical setting.
There have been attempts [17] to identify PD patients using
statistical methods. However, these methods have limitations
as they lack accurate quantification of tremor score, which
means they can only determine whether there is a tremor,
without a more accurate classification of tremor score.

Recently, various low-cost devices have been used to assess
motor impairment in Parkinson’s disease. For example, wear-
able sensors on the index finger, arm, and wrist joint are used
to test the upper extremity and lower extremity [18] in the free-
living environment. Another work [19] used a pen-and-tablet
device to test hand movement and muscle coordination to
classify PD group and Healthy control group. They introduced
some features which correspond to the variability of the pen
tip’s velocity: the deviation from the horizontal plane, and
the trajectory’s entropy. In addition, multimodal assessment
[20] of PD including speech, handwriting, and gait have been
studied in work based on a deep learning model. Unlike these
studies, our experiments explored more clinical motor tasks
for assessing PD motor performance and conducted a more
detailed classification.

Existing research on motor symptoms has been focused
on tremor and bradykinesia. A hierarchical framework [9]
has been proposed to monitor tremor and bradykinesia in
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daily life. They used tremor constancy, tremor amplitude
and hand bradykinesia score in at least 2 hours monitoring
data. They used a third-order 3.5-7.5 Hz Butterworth IIR
filter to preprocess the data and then calculated the tremor
amplitude by root mean square. They introduced four indi-
cators to measure bradykinesia: slowness, hesitancy, poverty
and absence. Another work [21] introduced amplitude and
periods of movements as bradykinesia features, and these
features have been proven to correlate well with the UPDRS
scores(r=−0.83, p=0.001). Based on this work, we calculated
the number of peaks to assess the bradykinesia symptom,
which could represent the periods of movement. We calculated
the signal amplitude with other statistical features to quantify
the severity of the tremor.

B. Wearable Signal Features

There are many time-domain and frequency-domain base-
line features have been applied in the field of computer-aided
diagnosis. In addition to time-domain and frequency-domain
features, which are mostly generated from an individual axis
of a sensor, there are hybrid-domain [22] features extracted
from signals combined with multiple sensors(accelerometer,
gyroscope, magnetometer) or multiple axes of a sensor. For
example, the signal magnitude area (SMA) is commonly used
to assess physical activity levels, especially to distinguish
static activities(sitting) from dynamic activities(walking). Tilt,
rotation, and yaw angle are calculated by combining the
values from both the accelerometer and gyroscope to represent
the postural orientation of the subjects. What’s more, some
contextual [23] features have been proposed to extract the
correlation information between contexts in time sequence.
However, these features erratically behave in PD diagnosis
because of the diversity of environmental settings and partici-
pants in a free-living environment. It is hard to decide which
features are effective. However, our aim is to present relevant
studies about hybrid features to present temporal correlation
and spatial correlation between accelerometer and gyroscope.

The effective features of different tasks may differ because
of the diversity of motor tasks in the real-life environment.
Nowadays, many feature selection algorithms [24] combined
with machine learning have been applied to the selection
of key features and quantification of disease level, including
Principal Component Analysis(PCA), filter, wrapper subset
evaluation, and embedded. Factor Analysis(FA) is also com-
monly used to fuse the signal properties derived from individ-
ual sensors and has been employed across various domains,
including sport training [25], and computer-aided medication
[26]. This technique generates new synthetic features after the
process of dimensionality reduction, potentially reducing the
computational burden of the model. Simultaneously, it could
enhance model accuracy by eliminating redundant (highly
correlated) and irrelevant (low variance) features. However,
the effectiveness of these feature selection methods is unknown
due to the diversity of activities in the free-living environment.
Therefore, this study rigorously compares diverse feature
selection methods in the quantification of Parkinson’s disease
(PD) severity and proposes a robust feature selection strategy

after comprehensively analyzing the features across distinct
motor tasks.

C. Machine Learning for PD Diagnosis

Several decision-level approaches such as voting, boosting,
bagging, and stacking have critically combined various inter-
mediate classification results to get an improved result. For
example, Sarfaraz Masood [15] explores the correlation be-
tween voice features calculated from PD subjects and proposes
a two-level ensemble-based feature extraction framework.

For motor symptoms recognition, San-Segundo [22] ex-
tracted tremor spectrum features based on non-negative factor-
ization and Convolutional Neural Networks (CNNs) features
to detect tremor segments in daily activities and several motor
tasks from UPDRS. But it can only detect whether the tremor
symptom exists or not, and can not recognize the severity
and the type of tremor(resting, postural, and kinetic). Another
deep learning-based work [18] found that weights learned
from unsupervised pre-training models with unlabelled data
would improve the performance of classification. However, the
operation of this model requires a large amount of unlabeled
data for pre-training.

In the field of PD severity classification, researchers aim
to link the features with specific motor symptoms to infer a
larger health marker that can reflect people’s health conditions.
Rehman RZ [27] found the optimal combination of clinically
relevant gait characteristics(mean step velocity, mean step
length, step length variability, mean step width and step
width variability) by SVM for early classification of PD. But
their work can only distinguish PD and HC and there is no
generalization in their feature selection method.

III. METHODOLOGY

This section describes the proposed framework of PD self-
diagnosis. As Fig. 2 shows, tremendous wearable technolo-
gies(signal decomposition, signal segmentation, signal trans-
formation, feature sorting) combined with machine learning
algorithms such as XGBoost or LightGBM) can construct new
approaches for effectively discriminating different PD states.
In the preprocessing step, apart from normalization, filtering,
and segmentation, the raw signals were transferred to more
domains to represent the motor fluctuation characters. In the
feature extraction step, different feature groups are extracted
in various dimensions from both sample-level and segment-
level signals. Lastly, features are resorted by reweighted SHAP
value and machine learning methods with leave-one-subject-
out validation method are used to verify the effectiveness of
this framework.

A. Experiment Protocol

In this study, all data collection was conducted under the
collaboration of Yunnan University and Yunnan First People’s
Hospital. The data collection started in September 2022 and
ended in March 2024, and was supported in part by the
National Natural Science Foundation of China under Grant
62061050. All participants provided written informed consent
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Fig. 1. Data collection and signal preprocessing

prior to their involvement in the study, and all experiments
adhered to the guidelines outlined in the Code of Ethics
of the World Medical Association (Declaration of Helsinki).
This experiment utilized external IMU sensors and involved
only non-invasive monitoring of physiological parameters.
The experimental protocol and ethical approval were obtained
from Yunnan University and Yunnan First People’s Hospi-
tal. Subsequently, AntData Company and the University of
Sheffield focused on data analysis and algorithm design. We
performed only one measurement point per patient because of
the difficulties in tracking a large number of patients at the
same time in real clinical settings. There have been numerous
research on long-term monitoring [28], [29] and short-term
clinical classification [30], [31], and our work focuses on
the latter one. It is challenging to conduct long-term follow-
up on patients’ conditions or obtain their medical histories.
Nevertheless, our experiment simulates the process of motion
diagnosis in the patient’s clinic, which can reflect the severity
of the patient’s condition at a certain time. This contributes to
quantifying and selecting disease-related features using non-
invasive sensors.

During the experiment, a professional wearable de-
vice(Shimmer:200Hz sampling rate) was worn on the right
side of the wrist, and a mobile phone was fixed 50 centimetres
away from the participants throughout the session for record-
ing. The rating scores are based on the assessments of three
experts after reaching a consensus according to the UPDRS
form. All of the gathered data were used for analysis without
any objective inclusion or exclusion criteria. As shown in
Tab. I, 100 PD patients were recruited from a hospital for this
experiment, and 25 young healthy people and 35 old healthy
people were invited as a control group. In Tab. II, participants
are instructed to perform 14 activities(Fig. 1) and execute each
activity as quickly as they can in around 20 to 60 seconds,
which is significantly different from existing PD diagnosis

research based on long-time monitoring. The activities in
this research are chosen from UPDRS [32] (Finger Tapping,
Clench Fist and Open, Hands Rotation, Hand Alternating-
right/left, Finger to nose-right/left, Standing with arms held)
and daily life(Walk Back and Forth, Arising from a Chair,
Drinking Water, Pick Things, Sitting, Standing).

TABLE I
DEMOGRAPHIC DATA OF STUDY POPULATION

Severity Age Weight Height M/F P S
Old Healthy 63.3(10.7) 62.6(11.6) 159.8(8.0) 15:20 35 17687

Young Healthy 22.8(1.0) 64.4(13.3) 171.0(8.5) 18:07 25 9263
PD(mild) 67.5(10.5) 63.3(8.3) 162.4(8.2) 14:12 26 10677

PD(moderate) 66.1(9.8) 57.5(9.2) 160.6(7.6) 22:15 37 15238
PD(severe) 67.8(8.9) 59.1(8.4) 159.7(7.0) 19:18 37 15234

M/F: Male/Female, P: Number of participants; S: Number of Samples

TABLE II
SHORT-TERM MOTOR TASKS DESCRIPTIONS

Activity
Abbreviations Motor Tasks Duration Time

mean (std)
FT Finger tapping 23.37 (4.44)

COA Clench and open alternately 23.04 (3.41)
ALTER Rapid alternating hands 23.09 (4.04)
HR-R Hand rotation right 23.40 (4.22)
HR-L Hand rotation left 23.34 (4.36)
FN-L Finger to nose left 23.32 (3.91)
FN-R Finger to nose right 22.80 (3.24)

STANDH Standing with arms hold 22.63 (3.62)
WA Walking around 50.30 (20.28)
AC Arising from chair 28.47 (11.83)

DRINK Drinking water 24.74 (3.78)
PICK Pick things 25.83 (6.60)
SIT Sitting 24.57 (6.70)

STAND Standing 23.48 (3.89)

B. Annotation Criteria for PD

The labels used in this experiment are annotated by sig-
nal experts and checked by neurologists from Yunnan First
People’s Hospital based on data collection videos, which
could only reflect the activity score of PD patients during the
outpatient period.

a) PD severity stages: In this experiment, the severity level
scores are given according to the description in Part III of the
UPDRS form. It is well known that in the Hoehn-Yahr(HY)
scale [33], the primary difference between HY-1 and HY-2 is
whether functional impairment is present only in one limb.
Since all data in this experiment were collected from a single
wrist sensor, we chose to use the ‘Mild’ level to replace both
HY-1 and HY-2. Additionally, the sample in HY-4 and HY-5
is relatively small and could result in class imbalance issues
when trained by the model directly. Therefore, HY-4 and HY-
5 are combined in this study to obtain a relatively balanced
dataset. Tab. III presents the criteria for annotating the PD
severity. It explains the labelling rules of the score and how
they match with mild, moderate, and severe levels of the
disease in this experiment. The labelling rules in this table
clearly state that the score for a patient is decided according
to the number of pauses, the speed, and the rate of decrease
of amplitude during short-term motor tasks in most motor
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TABLE III
PD SEVERITY ANNOTATION CRITERIA

Severity Level Mild Moderate Severe
HY Score severity 1 severity 2 severity 3 severity 4 severity 5

FT, COA, ALTER,
HR-R/L, FN-L/R,

DRINK, PICK
No problem

1-2 pauses;
Slightly slow;

Amplitude decreases
near the end.

3-5 pauses;
Mildly slow;

Amplitude decreases
at half the tasks.

5 or more pauses;
Moderately slow;

Amplitude decreases
from the beginning

Unable or barely
able to perform.

STANDH 25cm
extended distances

15∼25cm
extended distances

10∼15cm
extended distances

5∼10cm
extended distances

0∼5cm
extended distances

WA No problem Slight difficult One hand does not swing Neither hand swings Unable or barely
able to perform.

AC No problem Slight difficult Needs one side support Needs bilateral assistance Unable or barely
able to perform.

Labeled
patients (person) 2 24 37 21 16

tasks(FT, COA, ALTER, HR-RL, FN-LR, DRINK, PICK). For
example, when it comes to the task of standing with arms held,
the straight degree of the hands and the extended forward
distance are used to distinguish between different UPDRS
grades. When it comes to AC and WA, the degree of hand
swing and the need for assistance were used to measure the
completion of the movement. It is noticeable that there are
two patients with a severity 1 HY score in the Mild severity
level. This may be caused by the medical effect during the
experimental session.

b) PD motor symptoms: Amplitude and constancy [9] have
been utilized in recognizing PD resting tremors. However, they
are only applicable to binary classification for resting tremors
without analyzing those tremors occurring during dynamic
motor tasks. Another study [7] employed a novel digital
biomarker ‘displacement’ to detect motor fluctuations in daily
life. They categorized longitudinal tremors into three levels
using boundaries of 0.1cm, 0.6cm, and 2.2cm. Therefore, our
research labelled the tremor according to both the abnormal
amplitude and constancy of the symptoms. For example, severe
tremor means the tremor amplitude observed from the video is
>2cm and the constancy time is larger than 50%. Amplitude
0.5-2cm tremor amplitude and 26-50% constancy time mean
moderate tremor. Amplitude <0.5cm and the constancy time
less than 25% is mild tremor. Amplitude is the core character-
istic of recognizing tremor, followed by constancy. In addition,
the number of activities seen in the video is utilized to classify
the bradykinesia level. The constancy of interruptions has also
been recorded as part of PD motor symptoms.

C. Multi-Scale and Multi-Level Feature Engineering
Tab. IV shows the multi-scale and multi-level features in

PD area. These features are extracted after normalization,
transformation and segmentation. For example, signal mag-
nitude vector(SMV) and absolute vertical acceleration (AVA)
are normally used to fuse the channels from the accelerometer
and gyroscope in this experiment.

a) Signal preprocessing: Data collected from individuals
have various initial values at the start of signals, so we
normalized the data by using the Z-score algorithm to make the
signal vibrate around 0, and use band-pass filtering and sliding
window to prepare the data. Then, raw time domain sig-
nals could transferred into autocorrelation signals, frequency

domain signals, and power spectral density (PSD) signals
respectively. In addition, using a single axis to calculate the
tremor displacement may be infected by motion drift or gravity
components. Therefore, A-axis is used to represent the square
root of the sum of squares of three raw axis, and T-axis is the
arccos value of the z-axis.

b) Multi-Scale Feature Analysing : Multi-scale fea-
tures(Fig. 2(c)(d)) include extracting features both at the
sample level and the segment level. At the sample level,
features are extracted from the whole 20-50s signals and
mainly show the trend from the whole sample. The fluctuation
of amplitude in the time domain, the concentration area in the
spectral domain, and the maximum autocorrelation value in the
autocorrelation domain are recommended to be more valuable
to show motor symptoms. At the segment level, the best-size
activity window needs to contain at least one activity period,
so the selection of window size is related to the basic time
period of different activities, and then 50 % overlapping is
used to avoid cutting a cycle into two windows.

The sample level features mainly include peak numbers,
whole sample entropy, difference trends, axis correlation co-
efficients, and peak values. The peak detection algorithm is
important for counting the repetition number of the activities
from the whole time of signals. It has been found that the
sum of peaks’ frequency and amplitude performs better than
using peaks’ frequency and peaks’ amplitude separately. The
sum of the peaks’ values (peaksXY1-5) in the X (frequency)
and Y (amplitude) axis were recorded according to Algorithm
1. In Algorithm 1, the peak is recognized by Minimum Peak
Height(MPH), which is formulated as

mhp = Qmax + (Qmax −Qmin)/N, (1)

where Qmax and Qmin are respectively the 97th and 5th
percentile excluding NAN values, and N is the number of
samples. Zero is used for padding if there are less than five
peaks in a signal.

The maximum value in the autocorrelation domain is pro-
posed to show the ratio of pauses during the motor tasks in
this experiment. Multiple signals after different time delays
can be fused by a softmax function for temporal fusion, and
similar to this principle, the autocorrelation signal can reflect
the similarity between the original signal and the signal after
lagging for different time steps. The autocorrelation function
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…
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Segments
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…
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Fig. 2. Proposed feature assessment framework.

TABLE IV
FEATURE EXTRACTION FROM IMU

Sample Level
Feature Type Feature Abbreviations Dimension

Time domain
Number of peaks, Number of abnormal peaks,
Sample entropy, Information entropy,
Windowed mean/variance difference, Axis correlation

peaks normal/abnormal, fea sampleX/Y,
fea inforX/Y, meandif, vardif, t xyCor,
t xzCor, t xaCor, t yzCor, t yaCor, t zaCor,

14

Frequency domain Main frequency f peakXY1-5, f DF, 6
Spectrum domain Main Spectrum p peakXY1-5, p energyXYZ, p concent, 7
Autocorrelation domain Autocorrelation coeffiencient fea autoy, fea auto num, a peakXY1-5, 7

Segment Level
Feature Type Feature Abbreviations Dimension

Time domain Amptitude envelope area, Mean, Max, Standard,
Variance, Information entropy, Log energy, sma,

Interquartile range, Skew, Kurt,Root mean square,
crest factor, main peak value,

sub peak value, peak difference

∼ amp *, ∼ mean *, ∼ max *,∼ std *,
∼ var *, ∼ entr *, ∼ lgEnergy *, ∼ sma *,
∼ interq *, ∼ skew *, ∼ kurt *, ∼ rms *,

∼ cftor *, ∼ mainX *, ∼ mainY *,
∼ subX *, ∼ subY *, ∼ difX *,∼ difY *,

56
Frequency domain 76
Spectrum domain 76
Autocorrelation
domain 76

‘∼’ means features could be replaced by ‘t ’,‘f ’, ‘p ’,‘a ’ represent features from time domain, frequency domain, spectrum domain and autocorrelation domain
separately. ‘*’ could be replaced by ‘ x’, ‘ y’, ‘ z’ and ‘ a’ means features extracted from the single axis and the fusion axis. sma: signal magnitude area,
fea sampleX/Y: sample entropy, fea inforX/Y: information entropy, meandif: mean of peak difference, vadif: variance of peak difference, t xyCor: axis correlation
coefficients of x and y, DF: domain features, interq: interquatile range, cftor: crest factor

is calculated as

Rxx(τ) =

∫ +∞

−∞
x(t)x(t+ τ)dt, (2)

where τ is a time shift variable monotonically increasing.
In addition to the autocorrelation coefficient extracting the

context information from the signal, there are other context-
related features that represent the information between differ-
ent windows after signal segmentation.

Mean trend µT and windowed mean difference µD [34] are
calculated as

µT =

N∑
i=2

(|µi − µi−1|) , µD =

N∑
i=1

(|µ− µi|) , (3)

where µi denotes the mean of segments, and µ denotes the
mean of whole sample. In addition, the variance tend σT 2

and windowed variance difference σD2 are formulated as

σT 2 =

N∑
i=2

(∣∣σ2
i − σ2

i−1

∣∣) , σD2 =

N∑
i=1

(∣∣σ2 − σ2
i

∣∣) , (4)

where σi denotes the variance of segments, and σ denotes the
variance of whole sample.

Spectral concentration is the sum of three axis’ energy
power around the main frequency, which can be formulated
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as

EDF =

∫ DF+0.4

DF−0.4

Px(f)df +

∫ DF+0.4

DF−0.4

Py(f)df

+

∫ DF+0.4

DF−0.4

Pz(f)df,

(5)

where SC =
EDF

E
.

c) Multi-Level Feature Analysing: In the experiment, raw
time series data could be transferred into different levels
(Fig. 2(d)) including frequency level [35], spectrum level, and
autocorrelation level. Some statistical measures such as mean,
max, min, standard deviation(Std), root mean square(Rms),
peak-to-peak amplitude(Ptp), zero crossing rate(Czr), log-
energy, percentiles, interquartile range (Interq) could calcu-
lated directly from the transferred data. What’s more, some
domain-related features including kurtosis, skewness, domi-
nant frequency(Domifq), spectral energy(SpecEgy), and spec-
tral entropy(SpecEnt) could be extracted from the specific
domain level.

DF-0.4 DF+0.4

(a) (b)

(c) (d)

Fig. 3. Key feature visualization. (a) Amplitude envelope, (b) Main
frequency domain, (c) Spectral concentration, (d) Peak difference in
frequency domain.

For PD patients, tremors can be divided into Rest Tremor
3∼7Hz, Postural Tremor 8∼14Hz, and Kinetic Tremor
1∼2Hz, and the tremor information is mainly contained in
the 3∼14Hz frequency band. In this experiment, 0.3∼17Hz
bandpass filtering is used to pre-process the signals. In this
experiment, fast Fourier transform(FFT) is used to transfer
signals from the time domain to the frequency domain, FFT is
the most important stochastic signal analysis technique used
for analyzing time series signals, which can decompose the
raw signals into different periodic components(spectrum).

We demonstrate some effective domain features, i.e., Ampli-
tude envelop, Main frequency domain, Spectral concentration,
Low-frequency signals, in Fig. 3.

Algorithm 1 Peak Features Extraction Algorithm
Input: Signals S, Required peak numbers R, Candidate peak

points (Peak x, Peak y)
Output: FeatureList

1: while window slides within the sequence do
2: mph← mph = Qmax + (Qmax −Qmin)/N ,
3: Assigning candidate points as final peak points peak

while Peak y > mph.
4: count the number of final peak, assigning as M .
5: FeatureList.append(sample entropy(Peak x))
6: FeatureList.append(sample entropy(Peak y))
7: if M<R then
8: feature ← Peak x +Peak y for peak = 1, · · · , M
9: feature ← 0 for peak = M+1, · · · , R

10: else
11: feature ← Peak x +Peak y for peak = 1, · · · , R
12: end if
13: FeatureList.append(feature)
14: end while
15: return FeatureList

Amplitude envelop (mAmp) is formulated as

mAmp =
1

N

N∑
n=1

(envupper (n)− envlower (n)) , (6)

where envupper means the upper envelope, and envlower means
the lower envelope. The envelope line is plotted according to
the Hilbert function, and mAmp mean value of the amplitude
gap between the upper and lower envelope.

In Fig. 3(d), the discrepancy between the value of primary
and secondary peaks is recorded, where F inter x means the
discrepancy between the primary and secondary peaks, and
F inter y means the discrepancy between the primary and
secondary frequencies.

In addition, Crest Factor describes the sharpness of the
signal in a segment, which is calculated as

Crest Factor (cftor) =
Peak Value
RMS Value

, (7)

where the Peak Value is the maximum peak in the segments,
and the (Root Mean Square) RMS Value reflecting the signal’s
energy magnitude.

d) Feature Selection: In Fig. 2(e), we present a statistical
analysis to select the feature attributes that provided a sta-
tistically significant separation between the Mild, Moderate,
and Severe levels. We used SHAP value and LightGBM
importance to quantify the features for each patient separately
and then sorted the features by calculating the sum value
for all subjects. Different numbers of reordering features are
used to train the model to select the optimal number of key
features kinematically. In this study, to further extract the most
effective features, we reweight the features based on SHAP
value with additional binary classification weights. It could
achieve similar accuracy with fewer feature dimensions, but
it did not improve accuracy in most of our experiment results
and tended to be unstable when motor tasks changed. Even so,
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this strategy shows potential for extracting fewer key features
through short-term motor tasks.

LightGBM-based permutation importance cannot effectively
deal with features with medium influence. For example, some
features have a large influence on a small number of samples,
but have little influence on the whole, or maintain a moderate
influence in all samples. However, SHAP is a model interpre-
tation method which could assess the features more correctly.
Its core idea is to calculate the marginal contribution of each
feature when it is added to the model, and then take the average
of them in the case of all feature sequences.

D. Classification and Evaluation
XGBoost, LightGBM, SVM, KNN, Logistic regression,

and Convolutional Neural Networks are investigated in this
experiment to recognize PD severity. XGBoost and LightGBM
have been well-known as boosting algorithms in recent years,
and their base learners are all decision trees with greedy ideas
growing. LightGBM provides higher accuracy and shorter
training time than XGBoost. For more details about boosting,
it is a common ensemble learning algorithm, which trains a
series of weak learners and combines the prediction results of
all learners as the final prediction result. During the learning
process, the later learner pays more attention to the errors in
the learning of the previous learner.

We employ the Leave-One-Subject-Out (LOSO) cross-
validation as the protocal to evaluate the performance of
our method. For a dataset with S patients, there are totally
S fold experiments. The test set includes the samples from
one particular patient while the training set contains the
samples from the remaining patients, in each fold. The final
performance collects the results from all test sets and then is
calculated based on the collection. Each series of data was cut
into N segments according to the fixed window size, and then
the probability of these segments being divided into different
categories was calculated. The prediction value of a patient is
the mode of prediction values for N segments. Throughout the
experiment, the test data would not participate in any process
of the model training.

IV. EXPERIMENTS RESULTS

A. Motor symptoms recognition
There have been numerous research [36], [37] focus on

discovering the main features related to PD motor symp-
toms like tremor, bradykinesia, and rigidity. Amplitude, main
frequency [38] have been proved the importance when rec-
ognizing tremor. Dominant frequency, orientation angle, and
peak-to-peak value [39] have been proven to be effective
when recognizing bradykinesia. Sample level features includ-
ing ‘peaks normal’, ‘fea sampley’, ‘fea samplex’, ‘fea infory’,
‘fea inforx’, ‘peaks abnormal’, ‘fea autoy’, ‘fea auto num’,
‘meandif’, ‘vardif’, have been tested in this experiments, and
then the most relevant features are selected after ablation
experiments. As Fig. 4 shows, they are highly related to the
HY score. In Tab. V, tremor symptoms can be recognized in
sedentary or dynamic activities. All motor tasks are used to
detect tremors, but in the end, only four motor tasks have

(a) (b)

(c) (d)

Number of abnormal peaks related to Dysdiadochokinesia Autocorrelation coefficient related to Dysdiadochokinesia

Number of detected peaks related to Bradykinesia score Repeated number detection of Right-hand rotation

Fig. 4. Effective features from Right-hand rotation related to Dysdiado-
chokinesia and Bradykinesia

TABLE V
RESULTS OF FINE-GRAINED CLASSIFICATIONS OF MOTOR SYMPTOMS

Level precision recall f1-score support
Normal 0.943 1.000 0.971 33
Slight 0.778 0.636 0.700 11

Tremor Severe 0.667 0.667 0.667 6
accuracy 0.880 0.880 0.880 0.88

macro average 0.796 0.768 0.779 50
weighted average 0.873 0.88 0.875 50

Normal 0.792 0.826 0.809 23
Slight 0.818 0.643 0.720 14

Bradykinesia Severe 0.733 0.846 0.786 13
accuracy 0.780 0.780 0.780 0.78

macro average 0.781 0.772 0.771 50
weighted average 0.784 0.780 0.778 50

a recall value of above 70%, and most of them are static
activities. The Sit activity gets the highest recall value at 88%,
and the results of the other three activities are all above 70%.
To recognize tremor symptoms, features after filtering different
bands were fused to better include information from various
frequency ranges. Furthermore, the spectrum concentration
features and frequency domain features in the base features
have made a great contribution to the improvement of tremor
recognition results.

Fig. 4(a)(b) show characteristics related to Dysdiadochoki-
nesia recognition, while Fig. 4(c)(d) show how the number of
detected peaks related to Bradykinesia recognition. The data
in Fig. 4 are from the Right-hand rotation of 50 PD patients
with different severity levels, a band-pass filter(0.2-2hz) was
used to preprocess the axis with the highest energy value from
the accelerometer in advance.

Fig. 4(a) shows that the number of abnormal peaks is
positively correlated with the Dysdiadochokinesia score with a
p-value of 0.66. However, only using the number of abnormal
peaks for recognition still produces overlap in results, and we
found that the autocorrelation coefficient can clearly reflect this
property instead. In Fig. 4(b), the Dysdiadochokinesia score
can distinguish different levels of disorders according to the
maximum autocorrelation coefficient with a p-value of -0.92.

Fig. 4(c) represents that the number of detected peaks can
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well distinguish the four levels of Bradykinesia with a p-value
of -0.65. In Fig. 4(d), the X-axis represents the number of
activity repetitions counted according to the video, and the Y-
axis shows the number of peaks detected by peak detection
algorithms shown in Algorithm 1. It is clear that the number
of activities can be accurately detected by the number of peaks
with R2 = 0.43.

In Tab. V, we extended the time domain features and auto-
correlation domain features to identify tremor and Bradykine-
sia respectively and used the XGBoost algorithm to classify
them into four categories: normal, mild, moderate, and severe.
In the end, the weighted recall for Bradykinesia is 0.78.

B. PD severity classification
The original data from 14 activity types were respectively

cut with 0.5s, 1s, 1.5s, and 3s window sizes before feature
extraction to explore prior knowledge for proposing an adap-
tive window segmentation method on PD diagnosis. In our
experiment, a 1.5-second window size with 50% overlapping
was used because it is suitable for most of the activities.

Tab. VI presents the performance scores of classifiers across
various short-term motor tasks for disease severity recognition.
In the beginning, logistic regression was used as the baseline,
but it failed to achieve high accuracy during multiclass classi-
fication. Therefore, LightGBM is employed to achieve higher
accuracy. Furthermore, to tackle the imbalanced problem,
scores 4 and 5 are merged into the severe-level category for
subsequent severity classification. However, we observed that
there was no significant increase in accuracy whether or not
we combined the minority class samples. In the end, the results
show that ALTER, FN-R, STANDH, WA, AC, PICK and
STAND classifiers exhibit commendable performance, where
FN-R achieves scores ranging from 0.6413 to 0.7667, and
WA attains a score of 0.6737 in PD fine-grained classification.
Therefore, further experiments will be conducted to optimise
the results based on these three activities. Specifically, the ef-
fectiveness of features will be verified by comparing different
feature selection methods. Additionally, to enhance the accu-
racy of multi-class classification, we analyzed different binary
classifications and applied the feature importance learned from
binary classification to the model. The data collection time for
a patient is always under 10 minutes. Nearly no participants
stop participating due to the length of the collection time.
However, some severely ill patients are unable to complete the
full set of experiments because of their physical limitations.

Tab. VI illustrates the process of selecting the optimal activ-
ities WA using the LightGBM model from multiple activities.
In addition, the accuracy of severity fine-grained classification
in ALTER, FN-R, STANDH, WA, AC, PICK and STAND
are all above 0.6. In table Tab. VII, the accuracy of WA is
further improved to 0.7158 by utilizing a 31 dimensions key
feature subset. All the features from Tab. VIII are derived
from only one activity WA. Even though multiple activities
has been analyzed in this experiment, the results show that
the best activity could be selected to assess PD through our
generalized framework.

Results in Fig. 5 report the results of PD severity clas-
sification on the ALTER activity. Initially, the classifica-

tion accuracy (mild/moderate/severe) for the ALTER activity
was 0.6289. After applying the SHAP value feature rank-
ing, the accuracy improved to 0.7526 with the use of 96-
dimensional features. Furthermore, an accuracy of 0.5979
could be obtained with the use of 16-dimensional features
after combining the feature weights of the three-class classi-
fication (mild/moderate/severe) and the binary classifications
(mild/moderate, mild/severe). Fig. 5 (a-c) illustrates the ac-
curacy per individual using leave-one-subject-out validation
methods. Fig. 5(d) presents the overall results, indicating
that the binary classification between mild and severe levels
achieved the highest F1-score (0.896), followed by early detec-
tion with an F1-score of 0.843, and fine-grained quantification
(3 classes) for PD with an F1-score of 0.753. The figure
clearly shows that the 3-class classification (mild, moderate,
and severe levels) performed less satisfactorily, with 24 out of
100 samples misclassified. Among these, 17 were misclassified
into the severe class, with 13 having a true label of moderate
and 4 from mild level. Additionally, 7 were misclassified into
the moderate label, where 5 from mild-level, and 2 from
severe-level. Notably, no samples were misclassified into the
mild level. In the following experiments, videos combined
with doctors’ ratings are used to correct the activity labels
to approximately 5% of the total data. Accuracy from WA
activity is more stable, achieving an accuracy of 0.7159 with
a small number of features (31 dimensions), which helps
in model simplification. It is also found that most patients
classified through the ALTER activity had only 60%-80% of
their segments correctly classified, whereas patients classified
through WA activity had almost every segment correctly
classified. This further confirms that the ALTER activity relies
on segment-level features, while the WA activity relies on
sample-level features.

This experiment recorded the time of diagnosis and the time
since the last medication intake for PD patients but did not
select participants based on these values. In the previous work
[40], we focused on the anomalies and label uncertainty in
the free-living environment. In this work, our aim is to find a
more generalized framework combined with feature analysis
and machine learning algorithms to assess Parkinson’s disease.
Using strict selecting criteria may reduce our sample size and
make our model less generalizable.

More importantly, drug deprivation may lead to injuries for
patients, so patients were kept under periodic evaluation and
levodopa and/or dopamine agonist treatment for ethical and
safety reasons. As recorded in the personal information of
patients, the mean (variance) of the diagnosis time for the
PD group in this study was 71 (78), and the mean (variance)
of the time since the last medication intake was 188 (137).
The influence of medication on the results of this experiment
is limited because the labels were annotated according to real-
time video. Our study focuses on quantifying the differences
between patients with different disease degrees through feature
analysis and machine learning algorithms.

Some medication records and raw Initial Measurement
Units(IMU) data are missing due to sensor disconnections or
incomplete data caused by patients’ conditions. The number
of patients with missing specific activity data is shown in
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TABLE VI
RESULTS FOR DETECTING PD SEVERITY FROM SINGLE MOTOR TASK

LOGISTIC LightGBM

PD/OHC PD/HC Fine
Grained PD/OHC PD/HC Fine

Grained
FT 0.7797 0.7917 0.4184 0.8814 0.8333 0.5204

COA 0.7541 0.7059 0.4200 0.8852 0.5490 0.5500
ALTER 0.8525 0.6667 0.3814 0.8361 0.7451 0.6186
HR-R 0.8525 0.8235 0.4848 0.9016 0.6863 0.5657
HR-L 0.9016 0.6863 0.4343 0.9180 0.5882 0.5657
FN-L 0.8305 0.6875 0.4396 0.8983 0.7500 0.5604
FN-R 0.8833 0.7000 0.4565 0.7667 0.6000 0.6413

STANDH 0.5862 0.8889 0.4396 0.7586 0.8000 0.6044
WA 0.7500 0.8776 0.5263 0.8500 0.9184 0.6737
AC 0.8000 0.6500 0.5167 0.8667 0.725 0.6167

DRINK 0.9259 0.6471 0.4194 0.9259 0.9412 0.5484
PICK 0.7812 0.9000 0.3810 0.7500 0.7667 0.6190
SIT 0.6364 0.5000 0.3400 0.8485 0.6000 0.4800

STAND 0.8043 0.8214 0.4211 0.8043 0.7857 0.6491
The best and second results are shown in boldface. PD/OHC means
binary classification between PD mild level and Old Healthy Control,
PD/HC means binary classification between PD mild level and Young
Healthy Control. Fine Grained means three class classification among
mild, moderate and severe PD severity levels.

(a) (b)

(c) (d)

Fig. 5. Patient-based PD recognition results. (a): PD early detection
from healthy control group;(b): PD severity classification among mild,
moderate, and severe levels. (c): PD binary classification between mild
and severe levels. (d): Results for different level severity classifications.

parentheses: HR-R(30), FN-R(2), STANDH/SIT(3), WA(4),
AC(16), DRINK/PICK(20), STAND(14). It will lead to serious
small sample issues and class imbalance issues if we keep se-
lecting patients according to their medication conditions. Thus
all available data were maximally utilized in this experiment.

C. Feature assessment with Machine Learning methods

Results from Tab. VIII totally depends on WA activity. It
provides a comprehensive overview of performance scores
for various feature groups (the description of each feature
set is shown in Tab. IV) and classifiers in the context of
PD severity classification. Performance metrics are evaluated
based on different feature dimensions and classifiers(LGB,
SVM, KNN, XGB, Logistic regression and Convolutional
Neural Network(CNN)), considering early detection (binary

TABLE VII
FEATURE SELECTION AND SORTING RESULTS IN PD SEVERITY

CLASSIFICATION FOR FN-R, WA, AND STAND MOTOR TASKS.

LGB Permutance SHAP Value
Selected
Feature
Num.

FN-R WA STAND FN-R WA STAND

16 0.6413 0.6316 0.5789 0.6196 0.6421 0.5789
31 0.6522 0.5789 0.6140 0.6304 0.7158 0.5965
46 0.6196 0.6421 0.6140 0.5870 0.6632 0.5263
61 0.6522 0.6421 0.6140 0.5761 0.6947 0.5965
76 0.6413 0.6421 0.6316 0.5978 0.6421 0.6316
91 0.6522 0.6211 0.6842 0.5978 0.6947 0.6140
106 0.6522 0.6105 0.6316 0.5978 0.6842 0.5789
121 0.6630 0.6105 0.6316 0.5870 0.6947 0.5789
136 0.6522 0.6105 0.6140 0.5870 0.6526 0.5789
151 0.6413 0.6632 0.6316 0.5978 0.6526 0.6316
166 0.6522 0.6211 0.6842 0.5870 0.6526 0.5439
181 0.6413 0.6105 0.6140 0.5761 0.6421 0.6140

The best results are shown in boldface.

classification between OHC and mild PD) and the fine-
grained classification (mild/moderate/severe). We transformed
the original feature datasets into 3D before CNN training. For
WA activity, there are 6254 segments in the training data and
76 segments in the test data, and a window size of 20 with a
step size of 20 are used to transfer the data to three dimension
data. The small amount of data makes it unsuitable for most
deep-learning algorithms in this experiment. From Tab. VIII, it
is clear that in early detection, Sample features performs better
than Seg features, except for Logistic regression. Additionally,
Time features and Autocorr features perform better than Fre-
quency features and Spec features, and Acc features perform
better than Gyro features. The results show difference in
the fine-grained PD classification. Specifically, Time features
perform poorly in the fine-grained classification, whereas
Spec features perform well. Furthermore, Gyro features per-
form slightly better than Acc features.

Tab. IX provides detailed information on the best feature
subsets used for PD fine-grained classification. In this ex-
periment, we recorded the importance of features for each
patient and calculated their sum and standard deviation. The
features are sorted by the sum, as we believe this enhances
the generalizability of the feature selection module, while
the standard deviation reflects the stability of the features.
Spectrum domain features performed well in most tasks, while
sample-level features excelled in the WA activity due to the
high amplitude of arm swings when walking.

Fig. 6 and Tab. VII intricately elucidate the impact of
distinct feature selection dimensions and methodologies, vali-
dated using activity FN-R (20s), and WA (50s), STAND(50S)
respectively. The experiment starts with an initial dimension of
16, and subsequent increments of 15 dimensions per observa-
tion until 175 dimensions. Fig. 6 (a-c) illustrates the fluctuation
of accuracy as the number of feature dimensions increases. The
results illustrate that employing feature selection technology
based on SHAP values effectively reduces the feature dimen-
sions from 636 to 31 for activities FN-R, WA and STAND
respectively. This reduction contributes to an enhancement in
accuracy from 0.6737 to 0.7158. In Fig. 6 (d-f), the mean and
variance of features, ranked by their LightGBM permutation
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(a) (b) (c)

(e)(d) (f)

(h)(g) (i)

LGB sorted features from  FN-R LGB sorted features from  WA LGB sorted features from  STAND

SHAP-value sorted features from  FN-R SHAP-value sorted features from  WA SHAP-value sorted features from  STAND

Number of Features Number of Features Number of Features

Fig. 6. Feature selection and analysis of FN R, WA and STAND. (a-c): Accuracy of Mild, Moderate and Severe severity levels classification when
selecting different number of features (sorted by SHAP value); (d-f): Features sorted by LightGBM importance; (g-i): Features sorted by SHAP
value.

TABLE VIII
PD CLASSIFICATION RESULTS OF DIFFERENT FEATURE GROUPS AFTER FEATURE SELECTION AND FUSION

Classifiers LGB SVM KNN XGB Logistic CNN

Feature Early
Detection

Fine
Grained

Early
Detection

Fine
Grained

Early
Detection

Fine
Grained

Early
Detection

Fine
Grained

Early
Detection

Fine
Grained

Early
Detection

Fine
Grained

Sample Features 0.8500 0.6526 0.6667 0.5579 0.6833 0.4737 0.6500 0.5895 0.6667 0.6000 0.7500 0.5158
Seg Features 0.7500 0.6316 0.7667 0.5684 0.5000 0.5579 0.6000 0.5579 0.7667 0.5579 0.6000 0.5263

Time Features 0.8333 0.5053 0.7000 0.4737 0.6500 0.5053 0.6000 0.3789 0.6833 0.5158 0.7167 0.4947
Frequency Features 0.7333 0.6421 0.7333 0.5474 0.4333 0.4000 0.5333 0.5053 0.7167 0.5579 0.5667 0.4842
Autocorr Features 0.8500 0.6632 0.7167 0.5158 0.6500 0.5789 0.6333 0.6211 0.7000 0.5263 0.6833 0.5368

Spec Features 0.7500 0.7053 0.6833 0.5895 0.5333 0.5368 0.5500 0.5789 0.6667 0.6105 0.6500 0.5158
Acc Features 0.8333 0.5895 0.7500 0.5053 0.6167 0.4842 0.6500 0.3895 0.7667 0.5158 0.7167 0.5053

Gyro Features 0.8167 0.5579 0.6333 0.5474 0.5500 0.5474 0.6000 0.5789 0.6500 0.5789 0.7167 0.5368
All Features 0.8500 0.6737 0.7333 0.5263 0.6000 0.5368 0.6500 0.5895 0.7333 0.5158 0.6667 0.6000

Selected Features 0.8000 0.7158 0.6833 0.5263 0.7667 0.4421 0.6500 0.6105 0.6833 0.5158 0.7667 0.5368
The best results are shown in boldface. ‘Early’ means binary classification between HC and Mild PD, ‘Fine-grained’ means multiclass classification
among mild, moderate, and severe PD.

values, are presented. Furthermore, Fig. 6 (g-i) displays the
15 features with the highest SHAP mean. Each point on the
graph corresponds to the SHAP value of a single patient, with
colours indicating the original value of the feature. Notably,
the results indicate a substantial prevalence of sample fea over
segment fea in the key features from WA activity. Addition-

ally, the proportion of axis correlation in permutation value
remains consistently high, regardless of changes in activity
states.

V. DISCUSSION
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TABLE IX
FEATURES SORTED BY SHAP VALUE IN THREE KEY ACTIVITIES

FN-R WA STAND
feature sum mean/std feature sum mean(std) feature sum mean(std)

1 gyro fea samplex 10.21 0.22(1.32) gyro fea autoy 170.38 3.55(18.29) gyro fea autoy 69.84 2.41(11.17)
2 acc t xaCor 8.10 0.17(1.30) acc fea auto num 163.47 3.41(17.50) acc peaks abnormal 53.86 1.86(7.67)
3 acc t yzCor 5.67 0.12(0.64) gyro fea auto num 68.58 1.43(7.93) gyro p lgEnergy a 40.33 1.39(6.74)
4 gyro peaks normal 5.06 0.11(0.84) acc peaks abnormal 55.82 1.16(7.51) gyro fea sampley 17.50 0.60(3.54)
5 gyro fea sampley 4.96 0.11(2.06) acc fea autoy 38.20 0.80(5.86) gyro fea auto num 14.36 0.50(2.15)
6 gyro f skew y 4.66 0.10(0.56) acc fea samplex 35.74 0.74(4.26) acc fea auto num 13.38 0.46(2.71)
7 acc t skew y 4.20 0.09(0.55) gyro fea samplex 32.56 0.68(5.00) acc t xzCor 8.51 0.29(1.25)
8 acc p lgEnergy y 3.18 0.07(0.45) acc peaks normal 23.01 0.48(5.61) acc fea autoy 7.66 0.26(1.91)
9 acc t xzCor 2.52 0.05(0.56) gyro peaks abnormal 10.14 0.21(1.27) acc t yzCor 5.04 0.17(0.73)
10 acc f skew a 1.99 0.04(0.33) gyro peaks normal 8.42 0.18(4.66) gyro peaks normal 4.50 0.16(1.27)
11 gyro p amp a 1.62 0.03(0.20) acc f mainX z 3.33 0.07(0.39) acc fea sampley 4.38 0.15(1.92)
12 gyro p lgEnergy x 1.54 0.03(0.17) gyro t amp y 2.15 0.04(0.24) gyro t xyCor 2.84 0.10(0.39)
13 acc t xyCor 1.43 0.03(0.62) acc a subY x 1.89 0.04(0.22) acc t yaCor 2.70 0.09(0.58)
14 acc a amp x 1.25 0.03(0.20) acc a peakXY3 1.80 0.04(0.22) acc p interq a 2.28 0.08(0.31)
15 acc p lgEnergy z 1.20 0.03(0.20) acc t zaCor 1.56 0.03(0.28) acc t zaCor 1.61 0.06(0.27)
16 acc p interq y 1.15 0.02(0.19) acc t xaCor 1.17 0.02(0.13) acc p rms y 1.19 0.04(0.22)
17 gyro f cftor z 1.13 0.02(0.20) gyro a amp x 0.95 0.02(0.10) acc p max y 0.90 0.03(0.21)
18 acc peaks abnormal 1.06 0.02(0.96) acc f skew z 0.86 0.02(0.09) gyro p lgEnergy x 0.87 0.03(0.17)
19 acc t skew x 0.97 0.02(0.13) acc t max a 0.54 0.01(0.06) acc vardif 0.62 0.02(0.09)
20 acc f mainX z 0.94 0.02(0.13) gyro fea infory 0.49 0.01(0.33) acc t xaCor 0.61 0.02(0.15)

TABLE X
SUMMARY OF RESEARCH ON WEARABLE DEVICES APPLIED TO PD DIAGNOSIS.

Work(Year) Subjects Data Collection Paradigm Research Objectives Optimal Results

Nikhil et al. (2020) [9] 50HC, 31 PD 45min ADL monitoring Tremor detection
(binary classes) ACC: 83%

Butt et al. (2020) [31] 64 PD, 50 HC 2.5-minute laboratory tasks Quantify PD severity
(regression) ACC: 81.4%, RMSE: 0.101

Alexandros et al. (2020) [41] 14PD, 8HC 75-seconds ADL task Distinguish patients and HC
(binary classes) SEN: 86%, SPEC: 93%

Rob et al. (2021) [7] 225PD, 171 HC 6 months of ADL monitoring Detecting symptom changes
(binary classes) ACC: 94%

Mathias et al. (2021) [42] 66PD 6 days ADL monitoring The frequency of PKG data
changed treatment decisions

31.8% results changed,
88% dialogue improved

Proposed 100PD, 35HC 20-seconds clinical task Distinguish patients and HC,
Quantify PD severity (3 classes)

Distinguish PD/HC
ACC: 92.59%,
Quantify PD

ACC: 71.58%
PKG: Parkinson KinetiGraph; PD/HC means binary classification between PD mild group and Old healthy control group in this table.

A. Clinical Application

In real clinical data acquisition, standardizing activity pat-
terns is challenging due to environmental differences and
patient diversity. However, a precise evaluation of the disease
requires considering statistically significant features across
various experimental paradigms. It is hard to establish solid
disease-related features for PD severity classification in real-
life environments. In this study, we propose an automated
feature assessment framework for the quantification of the
severity of motor symptoms, which could actively address
changes in different environments with various tasks.

As depicted in the studies summarized in Tab. X, some
quantification experiments [7], [9], [28], [29], [42] are based
on long-term monitoring and are trained with longitudinal
data. These studies provide less prior knowledge about key
digital biomarkers at the segment level. Other investigations
[24], [30], [31], [41] only require 1-2 minutes of activity data.
However, these studies are confined to detecting the presence
of disease and do not undertake a more comprehensive analysis
of symptoms and the severity of the disease. Our model

employs shorter clinical medical activities, yielding better
results in distinguishing PD from HC and making notable
progress in the fine classification of PD patients. We introduce
an feature assessment framework for PD severity, utilizing a
substantial amount of data (100 PD, 35 HC) evaluated in a
real clinical scenario.

B. Feature analysis with classifier performance

In clinical settings, the acquired data exhibits variability
due to the challenge of ensuring that individuals consistently
perform motor tasks in a uniform posture. There are multiple
features have been proposed to recognize PD, but few of
them are suitable for all situations. Therefore, we performed
a systematic literature review(Tab. IV) about existing PD
motor features in various domains, and proposed a feature
assessment framework to learn the key features in free-living
environments. As illustrated in Fig. 2, our framework con-
siders features at both multi-scale and multi-domain levels,
and extracted features undergo analysis using various fea-
ture selection algorithms and machine learning methods. In
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comparison to existing methods, our approach demonstrates
adaptability to different experimental settings involving vari-
ous motor tasks. Furthermore, the enhanced feature selection
algorithm incorporated in the framework proves effective in
feature reduction in particular activities. According to the
experimental results, the key features keep changing under dif-
ferent tasks. For example, sample-level features, time-domain
features, and autocorrelation-domain features are suitable for
the early detection of PD, while spectrum-domain features
are more suitable for the fine-grained PD classification. In
conclusion, we present a novel multi-scale and multi-level
feature assessment framework and verified its effectiveness
from different domains and levels.

Most recent works did not highlight the choice of their
architecture and training hyperparameters. This study trained
six machine learning models for the automatic quantitative
scoring of PD severity and found the ensemble learning algo-
rithms(LightGBM) perform better than others. Furthermore,
we chose a strict validation strategy(leaving one subject out)
for unbiased evaluation of the feature performance. Each pa-
tient is selected as the test set in a loop and does not participate
in the training when selected as test set. Finally, we conclude
the performance of the classifiers is influenced by different
feature subsets. The DRINK achieved 0.9259 accuracy in
PD early detection. The automatically selected features with
LightGBM were observed to reach 0.7158 accuracy for the
fine-grained PD severity classification.

C. Limitations and future work
Existing studies have demonstrated that PD symptoms pre-

dominantly manifest as hand motor fluctuations. Consequently,
our study is based on unilateral wrist sensors, aiming to use
a limited number of sensors and achieve high accuracy. This
approach benefits self-testing for PD patients in their daily
lives. However, it may overlook symptoms in other body parts
and their interconnections within individuals.

None of the participants were required to discontinue the
drug to cooperate with the experiment. Drug deprivation may
lead to injuries for patients, so patients were kept under
periodic evaluation and levodopa and/or dopamine agonist
treatment for ethical and safety reasons. We understand that
without using exclusion or inclusion criteria, excluding the in-
fluence of medication on the experimental results can become
quite challenging. However, the influence of medication on the
results of this experiment is limited because the patient labels
used were annotated according to real-time video, capturing
the severity of movement symptoms.

Moreover, the experiment collects discrete data from each
clinic visit of the patients, lacking longitudinal data compar-
isons for the same patient across different periods. Although
we achieved 72% accuracy for mild/moderate/severe PD clas-
sification using a leave-one-subject-out validation method with
around 100 patients, the accuracy declined to 62% when using
an 8:2 split between training and validation with leave-one-out
validation for the test set. This decline is primarily caused by
the small number of samples and the issue of unbalanced data.
Dividing the validation set reduces the number of training sam-
ples. Therefore, we plan to increase the collection of patient

samples in the next stage and seek related data enhancement
algorithms. Despite these limitations, our definition of motor
symptoms through short-term motor tasks accurately repre-
sents the current mobility of the patient, making it applicable
in clinical practice and potentially aiding in PD self-diagnosis
at home.

VI. CONCLUSION

This work represents the initial attempt to assess highly
relevant features from multi-scale(temporal, frequency, spec-
trum, autocorrelation) and multi-level(sample, segment) levels
for the automatic classification of PD severity from short-term
motor tasks.

Sample-features, especially ‘amplitude area’,
‘normal/abnormal peak numbers’, and ‘max autocorrelation
value’, demonstrate higher accuracy in detecting motor
fluctuations through Right-hand rotation and sit tasks. For
fine-grained severity classification, ‘finger-to-nose (right)’,
‘walking around’, and ‘standing’ are identified as the most
effective tasks, while ‘drinking’, ‘hands rotation’ perform
better in early detection. Through WA task, SHAP performs
better than LightGBM, and finally, 31 explainable features
are extracted to improve the accuracy of fine-grained
classification.

Detail feature assessment experiments are conducted
through WA task. Two points of corresponding analysis
are concluded. Firstly, three types of features, i.e., Sam-
ple features, Time features, and Autocorr features, have out-
standing performance in early PD detection, simultaneously,
Acc features outperform Gyro features. The results are dif-
ferent from that in fine-grained PD classification, where
Spec features outperform Time features, and Gyro features
outperform slightly than Acc features.
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